threading
--- Higher-level threading interfaceSource code: Lib/threading.py
[UNKNOWN NODE transition]This module constructs higher-level threading interfaces on top of the lower
level thread
module.
See also the mutex
and Queue
modules.
The dummy_threading
module is provided for situations where
threading
cannot be used because thread
is missing.
Note
Starting with Python 2.6, this module provides PEP 8 compliant aliases and
properties to replace the camelCase
names that were inspired by Java's
threading API. This updated API is compatible with that of the
multiprocessing
module. However, no schedule has been set for the
deprecation of the camelCase
names and they remain fully supported in
both Python 2.x and 3.x.
Note
Starting with Python 2.5, several Thread methods raise RuntimeError
instead of AssertionError
if called erroneously.
CPython implementation detail: In CPython, due to the Global Interpreter Lock, only one thread
can execute Python code at once (even though certain performance-oriented
libraries might overcome this limitation).
If you want your application to make better use of the computational
resources of multi-core machines, you are advised to use
multiprocessing
. However, threading is still an appropriate model
if you want to run multiple I/O-bound tasks simultaneously.
This module defines the following functions and objects:
threading.active_count()
threading.activeCount()[source]
Return the number of Thread
objects currently alive. The returned
count is equal to the length of the list returned by enumerate()
.
Changed in version 2.6: Added active_count()
spelling.
threading.Condition()[source]
A factory function that returns a new condition variable object. A condition variable allows one or more threads to wait until they are notified by another thread.
See Condition Objects.
threading.current_thread()
threading.currentThread()[source]
Return the current Thread
object, corresponding to the caller's thread
of control. If the caller's thread of control was not created through the
threading
module, a dummy thread object with limited functionality is
returned.
Changed in version 2.6: Added current_thread()
spelling.
threading.enumerate()[source]
Return a list of all Thread
objects currently alive. The list
includes daemonic threads, dummy thread objects created by
current_thread()
, and the main thread. It excludes terminated threads
and threads that have not yet been started.
threading.Event()[source]
A factory function that returns a new event object. An event manages a flag
that can be set to true with the set()
method and reset to false
with the clear()
method. The wait()
method blocks until the flag
is true.
See Event Objects.
class threading.local
A class that represents thread-local data. Thread-local data are data whose
values are thread specific. To manage thread-local data, just create an
instance of local
(or a subclass) and store attributes on it:
mydata = threading.local()
mydata.x = 1
The instance's values will be different for separate threads.
For more details and extensive examples, see the documentation string of the
_threading_local
module.
New in version 2.4.
threading.Lock()
A factory function that returns a new primitive lock object. Once a thread has acquired it, subsequent attempts to acquire it block, until it is released; any thread may release it.
See Lock Objects.
threading.RLock()[source]
A factory function that returns a new reentrant lock object. A reentrant lock must be released by the thread that acquired it. Once a thread has acquired a reentrant lock, the same thread may acquire it again without blocking; the thread must release it once for each time it has acquired it.
See RLock Objects.
threading.Semaphore([value])[source]
A factory function that returns a new semaphore object. A semaphore manages a
counter representing the number of release()
calls minus the number of
acquire()
calls, plus an initial value. The acquire()
method blocks
if necessary until it can return without making the counter negative. If not
given, value defaults to 1.
See Semaphore Objects.
threading.BoundedSemaphore([value])[source]
A factory function that returns a new bounded semaphore object. A bounded
semaphore checks to make sure its current value doesn't exceed its initial
value. If it does, ValueError
is raised. In most situations semaphores
are used to guard resources with limited capacity. If the semaphore is released
too many times it's a sign of a bug. If not given, value defaults to 1.
class threading.Thread[source]
A class that represents a thread of control. This class can be safely subclassed in a limited fashion.
See Thread Objects.
class threading.Timer[source]
A thread that executes a function after a specified interval has passed.
See Timer Objects.
threading.settrace(func)[source]
Set a trace function for all threads started from the threading
module.
The func will be passed to sys.settrace()
for each thread, before its
run()
method is called.
New in version 2.3.
threading.setprofile(func)[source]
Set a profile function for all threads started from the threading
module.
The func will be passed to sys.setprofile()
for each thread, before its
run()
method is called.
New in version 2.3.
threading.stack_size([size])
Return the thread stack size used when creating new threads. The optional
size argument specifies the stack size to be used for subsequently created
threads, and must be 0 (use platform or configured default) or a positive
integer value of at least 32,768 (32 KiB). If size is not specified,
0 is used. If changing the thread stack size is
unsupported, a ThreadError
is raised. If the specified stack size is
invalid, a ValueError
is raised and the stack size is unmodified. 32kB
is currently the minimum supported stack size value to guarantee sufficient
stack space for the interpreter itself. Note that some platforms may have
particular restrictions on values for the stack size, such as requiring a
minimum stack size > 32kB or requiring allocation in multiples of the system
memory page size - platform documentation should be referred to for more
information (4kB pages are common; using multiples of 4096 for the stack size is
the suggested approach in the absence of more specific information).
Availability: Windows, systems with POSIX threads.
New in version 2.5.
exception threading.ThreadError
Raised for various threading-related errors as described below. Note that
many interfaces use RuntimeError
instead of ThreadError
.
Detailed interfaces for the objects are documented below.
The design of this module is loosely based on Java's threading model. However,
where Java makes locks and condition variables basic behavior of every object,
they are separate objects in Python. Python's Thread
class supports a
subset of the behavior of Java's Thread class; currently, there are no
priorities, no thread groups, and threads cannot be destroyed, stopped,
suspended, resumed, or interrupted. The static methods of Java's Thread class,
when implemented, are mapped to module-level functions.
All of the methods described below are executed atomically.
This class represents an activity that is run in a separate thread of control.
There are two ways to specify the activity: by passing a callable object to the
constructor, or by overriding the run()
method in a subclass. No other
methods (except for the constructor) should be overridden in a subclass. In
other words, only override the __init__()
and run()
methods of
this class.
Once a thread object is created, its activity must be started by calling the
thread's start()
method. This invokes the run()
method in a
separate thread of control.
Once the thread's activity is started, the thread is considered 'alive'. It
stops being alive when its run()
method terminates -- either normally, or
by raising an unhandled exception. The is_alive()
method tests whether the
thread is alive.
Other threads can call a thread's join()
method. This blocks the calling
thread until the thread whose join()
method is called is terminated.
A thread has a name. The name can be passed to the constructor, and read or
changed through the name
attribute.
A thread can be flagged as a "daemon thread". The significance of this flag is
that the entire Python program exits when only daemon threads are left. The
initial value is inherited from the creating thread. The flag can be set
through the daemon
property.
Note
Daemon threads are abruptly stopped at shutdown. Their resources (such
as open files, database transactions, etc.) may not be released properly.
If you want your threads to stop gracefully, make them non-daemonic and
use a suitable signalling mechanism such as an Event
.
There is a "main thread" object; this corresponds to the initial thread of control in the Python program. It is not a daemon thread.
There is the possibility that "dummy thread objects" are created. These are
thread objects corresponding to "alien threads", which are threads of control
started outside the threading module, such as directly from C code. Dummy
thread objects have limited functionality; they are always considered alive and
daemonic, and cannot be join()
ed. They are never deleted, since it is
impossible to detect the termination of alien threads.
class threading.Thread(group=None, target=None, name=None, args=(), kwargs={})[source]
This constructor should always be called with keyword arguments. Arguments are:
group should be None
; reserved for future extension when a
ThreadGroup
class is implemented.
target is the callable object to be invoked by the run()
method.
Defaults to None
, meaning nothing is called.
name is the thread name. By default, a unique name is constructed of the form "Thread-N" where N is a small decimal number.
args is the argument tuple for the target invocation. Defaults to ()
.
kwargs is a dictionary of keyword arguments for the target invocation.
Defaults to {}
.
If the subclass overrides the constructor, it must make sure to invoke the
base class constructor (Thread.__init__()
) before doing anything else to
the thread.
start()[source]
Start the thread's activity.
It must be called at most once per thread object. It arranges for the
object's run()
method to be invoked in a separate thread of control.
This method will raise a RuntimeError
if called more than once
on the same thread object.
run()[source]
Method representing the thread's activity.
You may override this method in a subclass. The standard run()
method invokes the callable object passed to the object's constructor as
the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.
join([timeout])[source]
Wait until the thread terminates. This blocks the calling thread until the
thread whose join()
method is called terminates -- either normally
or through an unhandled exception -- or until the optional timeout occurs.
When the timeout argument is present and not None
, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof). As join()
always returns None
, you must
call isAlive()
after join()
to decide whether a timeout
happened -- if the thread is still alive, the join()
call timed out.
When the timeout argument is not present or None
, the operation will
block until the thread terminates.
A thread can be join()
ed many times.
join()
raises a RuntimeError
if an attempt is made to join
the current thread as that would cause a deadlock. It is also an error to
join()
a thread before it has been started and attempts to do so
raises the same exception.
name
A string used for identification purposes only. It has no semantics. Multiple threads may be given the same name. The initial name is set by the constructor.
New in version 2.6.
getName()[source]
setName()[source]
Pre-2.6 API for name
.
ident
The 'thread identifier' of this thread or None
if the thread has not
been started. This is a nonzero integer. See the
thread.get_ident()
function. Thread identifiers may be recycled
when a thread exits and another thread is created. The identifier is
available even after the thread has exited.
New in version 2.6.
is_alive()
isAlive()[source]
Return whether the thread is alive.
This method returns True
just before the run()
method starts
until just after the run()
method terminates. The module function
enumerate()
returns a list of all alive threads.
Changed in version 2.6: Added is_alive()
spelling.
daemon
A boolean value indicating whether this thread is a daemon thread (True)
or not (False). This must be set before start()
is called,
otherwise RuntimeError
is raised. Its initial value is inherited
from the creating thread; the main thread is not a daemon thread and
therefore all threads created in the main thread default to daemon
= False
.
The entire Python program exits when no alive non-daemon threads are left.
New in version 2.6.
isDaemon()[source]
setDaemon()[source]
Pre-2.6 API for daemon
.
A primitive lock is a synchronization primitive that is not owned by a
particular thread when locked. In Python, it is currently the lowest level
synchronization primitive available, implemented directly by the thread
extension module.
A primitive lock is in one of two states, "locked" or "unlocked". It is created
in the unlocked state. It has two basic methods, acquire()
and
release()
. When the state is unlocked, acquire()
changes the state
to locked and returns immediately. When the state is locked, acquire()
blocks until a call to release()
in another thread changes it to unlocked,
then the acquire()
call resets it to locked and returns. The
release()
method should only be called in the locked state; it changes the
state to unlocked and returns immediately. If an attempt is made to release an
unlocked lock, a ThreadError
will be raised.
When more than one thread is blocked in acquire()
waiting for the state to
turn to unlocked, only one thread proceeds when a release()
call resets
the state to unlocked; which one of the waiting threads proceeds is not defined,
and may vary across implementations.
All methods are executed atomically.
Lock.acquire([blocking])
Acquire a lock, blocking or non-blocking.
When invoked with the blocking argument set to True
(the default),
block until the lock is unlocked, then set it to locked and return True
.
When invoked with the blocking argument set to False
, do not block.
If a call with blocking set to True
would block, return False
immediately; otherwise, set the lock to locked and return True
.
Lock.release()
Release a lock.
When the lock is locked, reset it to unlocked, and return. If any other threads are blocked waiting for the lock to become unlocked, allow exactly one of them to proceed.
When invoked on an unlocked lock, a ThreadError
is raised.
There is no return value.
A reentrant lock is a synchronization primitive that may be acquired multiple times by the same thread. Internally, it uses the concepts of "owning thread" and "recursion level" in addition to the locked/unlocked state used by primitive locks. In the locked state, some thread owns the lock; in the unlocked state, no thread owns it.
To lock the lock, a thread calls its acquire()
method; this returns once
the thread owns the lock. To unlock the lock, a thread calls its
release()
method. acquire()
/release()
call pairs may be
nested; only the final release()
(the release()
of the outermost
pair) resets the lock to unlocked and allows another thread blocked in
acquire()
to proceed.
RLock.acquire([blocking=1])
Acquire a lock, blocking or non-blocking.
When invoked without arguments: if this thread already owns the lock, increment the recursion level by one, and return immediately. Otherwise, if another thread owns the lock, block until the lock is unlocked. Once the lock is unlocked (not owned by any thread), then grab ownership, set the recursion level to one, and return. If more than one thread is blocked waiting until the lock is unlocked, only one at a time will be able to grab ownership of the lock. There is no return value in this case.
When invoked with the blocking argument set to true, do the same thing as when called without arguments, and return true.
When invoked with the blocking argument set to false, do not block. If a call without an argument would block, return false immediately; otherwise, do the same thing as when called without arguments, and return true.
RLock.release()
Release a lock, decrementing the recursion level. If after the decrement it is zero, reset the lock to unlocked (not owned by any thread), and if any other threads are blocked waiting for the lock to become unlocked, allow exactly one of them to proceed. If after the decrement the recursion level is still nonzero, the lock remains locked and owned by the calling thread.
Only call this method when the calling thread owns the lock. A
RuntimeError
is raised if this method is called when the lock is
unlocked.
There is no return value.
A condition variable is always associated with some kind of lock; this can be passed in or one will be created by default. (Passing one in is useful when several condition variables must share the same lock.)
A condition variable has acquire()
and release()
methods that call
the corresponding methods of the associated lock. It also has a wait()
method, and notify()
and notifyAll()
methods. These three must only
be called when the calling thread has acquired the lock, otherwise a
RuntimeError
is raised.
The wait()
method releases the lock, and then blocks until it is awakened
by a notify()
or notifyAll()
call for the same condition variable in
another thread. Once awakened, it re-acquires the lock and returns. It is also
possible to specify a timeout.
The notify()
method wakes up one of the threads waiting for the condition
variable, if any are waiting. The notifyAll()
method wakes up all threads
waiting for the condition variable.
Note: the notify()
and notifyAll()
methods don't release the lock;
this means that the thread or threads awakened will not return from their
wait()
call immediately, but only when the thread that called
notify()
or notifyAll()
finally relinquishes ownership of the lock.
Tip: the typical programming style using condition variables uses the lock to
synchronize access to some shared state; threads that are interested in a
particular change of state call wait()
repeatedly until they see the
desired state, while threads that modify the state call notify()
or
notifyAll()
when they change the state in such a way that it could
possibly be a desired state for one of the waiters. For example, the following
code is a generic producer-consumer situation with unlimited buffer capacity:
# Consume one item
cv.acquire()
while not an_item_is_available():
cv.wait()
get_an_available_item()
cv.release()
# Produce one item
cv.acquire()
make_an_item_available()
cv.notify()
cv.release()
To choose between notify()
and notifyAll()
, consider whether one
state change can be interesting for only one or several waiting threads. E.g.
in a typical producer-consumer situation, adding one item to the buffer only
needs to wake up one consumer thread.
class threading.Condition([lock])[source]
If the lock argument is given and not None
, it must be a Lock
or RLock
object, and it is used as the underlying lock. Otherwise,
a new RLock
object is created and used as the underlying lock.
acquire(*args)
Acquire the underlying lock. This method calls the corresponding method on the underlying lock; the return value is whatever that method returns.
release()
Release the underlying lock. This method calls the corresponding method on the underlying lock; there is no return value.
wait([timeout])
Wait until notified or until a timeout occurs. If the calling thread has not
acquired the lock when this method is called, a RuntimeError
is raised.
This method releases the underlying lock, and then blocks until it is
awakened by a notify()
or notifyAll()
call for the same
condition variable in another thread, or until the optional timeout
occurs. Once awakened or timed out, it re-acquires the lock and returns.
When the timeout argument is present and not None
, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof).
When the underlying lock is an RLock
, it is not released using
its release()
method, since this may not actually unlock the lock
when it was acquired multiple times recursively. Instead, an internal
interface of the RLock
class is used, which really unlocks it
even when it has been recursively acquired several times. Another internal
interface is then used to restore the recursion level when the lock is
reacquired.
notify(n=1)
By default, wake up one thread waiting on this condition, if any. If the
calling thread has not acquired the lock when this method is called, a
RuntimeError
is raised.
This method wakes up at most n of the threads waiting for the condition variable; it is a no-op if no threads are waiting.
The current implementation wakes up exactly n threads, if at least n threads are waiting. However, it's not safe to rely on this behavior. A future, optimized implementation may occasionally wake up more than n threads.
Note: an awakened thread does not actually return from its wait()
call until it can reacquire the lock. Since notify()
does not
release the lock, its caller should.
notify_all()
notifyAll()
Wake up all threads waiting on this condition. This method acts like
notify()
, but wakes up all waiting threads instead of one. If the
calling thread has not acquired the lock when this method is called, a
RuntimeError
is raised.
Changed in version 2.6: Added notify_all()
spelling.
This is one of the oldest synchronization primitives in the history of computer
science, invented by the early Dutch computer scientist Edsger W. Dijkstra (he
used P()
and V()
instead of acquire()
and release()
).
A semaphore manages an internal counter which is decremented by each
acquire()
call and incremented by each release()
call. The counter
can never go below zero; when acquire()
finds that it is zero, it blocks,
waiting until some other thread calls release()
.
class threading.Semaphore([value])[source]
The optional argument gives the initial value for the internal counter; it
defaults to 1
. If the value given is less than 0, ValueError
is
raised.
acquire([blocking])
Acquire a semaphore.
When invoked without arguments: if the internal counter is larger than
zero on entry, decrement it by one and return immediately. If it is zero
on entry, block, waiting until some other thread has called
release()
to make it larger than zero. This is done with proper
interlocking so that if multiple acquire()
calls are blocked,
release()
will wake exactly one of them up. The implementation may
pick one at random, so the order in which blocked threads are awakened
should not be relied on. There is no return value in this case.
When invoked with blocking set to true, do the same thing as when called without arguments, and return true.
When invoked with blocking set to false, do not block. If a call without an argument would block, return false immediately; otherwise, do the same thing as when called without arguments, and return true.
release()
Release a semaphore, incrementing the internal counter by one. When it was zero on entry and another thread is waiting for it to become larger than zero again, wake up that thread.
Semaphore
ExampleSemaphores are often used to guard resources with limited capacity, for example, a database server. In any situation where the size of the resource is fixed, you should use a bounded semaphore. Before spawning any worker threads, your main thread would initialize the semaphore:
maxconnections = 5
...
pool_sema = BoundedSemaphore(value=maxconnections)
Once spawned, worker threads call the semaphore's acquire and release methods when they need to connect to the server:
pool_sema.acquire()
conn = connectdb()
... use connection ...
conn.close()
pool_sema.release()
The use of a bounded semaphore reduces the chance that a programming error which causes the semaphore to be released more than it's acquired will go undetected.
This is one of the simplest mechanisms for communication between threads: one thread signals an event and other threads wait for it.
An event object manages an internal flag that can be set to true with the
set()
method and reset to false with the clear()
method. The wait()
method blocks until the flag is true.
class threading.Event[source]
The internal flag is initially false.
is_set()
isSet()
Return true if and only if the internal flag is true.
Changed in version 2.6: Added is_set()
spelling.
set()
Set the internal flag to true. All threads waiting for it to become true
are awakened. Threads that call wait()
once the flag is true will
not block at all.
clear()
Reset the internal flag to false. Subsequently, threads calling
wait()
will block until set()
is called to set the internal
flag to true again.
wait([timeout])
Block until the internal flag is true. If the internal flag is true on
entry, return immediately. Otherwise, block until another thread calls
set()
to set the flag to true, or until the optional timeout
occurs.
When the timeout argument is present and not None
, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof).
This method returns the internal flag on exit, so it will always return
True
except if a timeout is given and the operation times out.
Changed in version 2.7: Previously, the method always returned None
.
This class represents an action that should be run only after a certain amount
of time has passed --- a timer. Timer
is a subclass of Thread
and as such also functions as an example of creating custom threads.
Timers are started, as with threads, by calling their start()
method. The timer can be stopped (before its action has begun) by calling the
cancel()
method. The interval the timer will wait before
executing its action may not be exactly the same as the interval specified by
the user.
For example:
def hello():
print "hello, world"
t = Timer(30.0, hello)
t.start() # after 30 seconds, "hello, world" will be printed
class threading.Timer(interval, function, args=[], kwargs={})[source]
Create a timer that will run function with arguments args and keyword arguments kwargs, after interval seconds have passed.
cancel()
Stop the timer, and cancel the execution of the timer's action. This will only work if the timer is still in its waiting stage.
with
statementAll of the objects provided by this module that have acquire()
and
release()
methods can be used as context managers for a with
statement. The acquire()
method will be called when the block is entered,
and release()
will be called when the block is exited.
Currently, Lock
, RLock
, Condition
,
Semaphore
, and BoundedSemaphore
objects may be used as
with
statement context managers. For example:
import threading
some_rlock = threading.RLock()
with some_rlock:
print "some_rlock is locked while this executes"
While the import machinery is thread-safe, there are two key restrictions on threaded imports due to inherent limitations in the way that thread-safety is provided:
- Firstly, other than in the main module, an import should not have the side effect of spawning a new thread and then waiting for that thread in any way. Failing to abide by this restriction can lead to a deadlock if the spawned thread directly or indirectly attempts to import a module.
- Secondly, all import attempts must be completed before the interpreter starts shutting itself down. This can be most easily achieved by only performing imports from non-daemon threads created through the threading module. Daemon threads and threads created directly with the thread module will require some other form of synchronization to ensure they do not attempt imports after system shutdown has commenced. Failure to abide by this restriction will lead to intermittent exceptions and crashes during interpreter shutdown (as the late imports attempt to access machinery which is no longer in a valid state).