functools
--- Higher-order functions and operations on callable objectsNew in version 2.5.
Source code: Lib/functools.py
[UNKNOWN NODE transition]The functools
module is for higher-order functions: functions that act on
or return other functions. In general, any callable object can be treated as a
function for the purposes of this module.
The functools
module defines the following functions:
functools.cmp_to_key(func)[source]
Transform an old-style comparison function to a key function. Used
with tools that accept key functions (such as sorted()
, min()
,
max()
, heapq.nlargest()
, heapq.nsmallest()
,
itertools.groupby()
). This function is primarily used as a transition
tool for programs being converted to Python 3 where comparison functions are
no longer supported.
A comparison function is any callable that accept two arguments, compares them, and returns a negative number for less-than, zero for equality, or a positive number for greater-than. A key function is a callable that accepts one argument and returns another value to be used as the sort key.
Example:
sorted(iterable, key=cmp_to_key(locale.strcoll)) # locale-aware sort order
For sorting examples and a brief sorting tutorial, see Sorting HOW TO.
New in version 2.7.
functools.total_ordering(cls)[source]
Given a class defining one or more rich comparison ordering methods, this class decorator supplies the rest. This simplifies the effort involved in specifying all of the possible rich comparison operations:
The class must define one of __lt__()
, __le__()
,
__gt__()
, or __ge__()
.
In addition, the class should supply an __eq__()
method.
For example:
@total_ordering
class Student:
def __eq__(self, other):
return ((self.lastname.lower(), self.firstname.lower()) ==
(other.lastname.lower(), other.firstname.lower()))
def __lt__(self, other):
return ((self.lastname.lower(), self.firstname.lower()) <
(other.lastname.lower(), other.firstname.lower()))
New in version 2.7.
functools.reduce(function, iterable[, initializer])
This is the same function as reduce()
. It is made available in this module
to allow writing code more forward-compatible with Python 3.
New in version 2.6.
functools.partial(func[,*args][, **keywords])
Return a new partial
object which when called will behave like func
called with the positional arguments args and keyword arguments keywords. If
more arguments are supplied to the call, they are appended to args. If
additional keyword arguments are supplied, they extend and override keywords.
Roughly equivalent to:
def partial(func, *args, **keywords):
def newfunc(*fargs, **fkeywords):
newkeywords = keywords.copy()
newkeywords.update(fkeywords)
return func(*(args + fargs), **newkeywords)
newfunc.func = func
newfunc.args = args
newfunc.keywords = keywords
return newfunc
The partial()
is used for partial function application which "freezes"
some portion of a function's arguments and/or keywords resulting in a new object
with a simplified signature. For example, partial()
can be used to create
a callable that behaves like the int()
function where the base argument
defaults to two:
functools.update_wrapper(wrapper, wrapped[, assigned][, updated])[source]
Update a wrapper function to look like the wrapped function. The optional arguments are tuples to specify which attributes of the original function are assigned directly to the matching attributes on the wrapper function and which attributes of the wrapper function are updated with the corresponding attributes from the original function. The default values for these arguments are the module level constants WRAPPER_ASSIGNMENTS (which assigns to the wrapper function's __name__, __module__ and __doc__, the documentation string) and WRAPPER_UPDATES (which updates the wrapper function's __dict__, i.e. the instance dictionary).
The main intended use for this function is in decorator functions which wrap the decorated function and return the wrapper. If the wrapper function is not updated, the metadata of the returned function will reflect the wrapper definition rather than the original function definition, which is typically less than helpful.
functools.wraps(wrapped[, assigned][, updated])[source]
This is a convenience function for invoking update_wrapper()
as a
function decorator when defining a wrapper function. It is equivalent to
partial(update_wrapper, wrapped=wrapped, assigned=assigned, updated=updated)
.
For example:
>>> from functools import wraps
>>> def my_decorator(f):
... @wraps(f)
... def wrapper(*args, **kwds):
... print 'Calling decorated function'
... return f(*args, **kwds)
... return wrapper
...
>>> @my_decorator
... def example():
... """Docstring"""
... print 'Called example function'
...
>>> example()
Calling decorated function
Called example function
>>> example.__name__
'example'
>>> example.__doc__
'Docstring'
Without the use of this decorator factory, the name of the example function
would have been 'wrapper'
, and the docstring of the original example()
would have been lost.
partial
Objectspartial
objects are callable objects created by partial()
. They
have three read-only attributes:
partial.func
A callable object or function. Calls to the partial
object will be
forwarded to func
with new arguments and keywords.
partial.args
The leftmost positional arguments that will be prepended to the positional
arguments provided to a partial
object call.
partial.keywords
The keyword arguments that will be supplied when the partial
object is
called.
partial
objects are like function
objects in that they are
callable, weak referencable, and can have attributes. There are some important
differences. For instance, the __name__
and __doc__
attributes
are not created automatically. Also, partial
objects defined in
classes behave like static methods and do not transform into bound methods
during instance attribute look-up.