PostgreSQL specific aggregation functions
These functions are described in more detail in the PostgreSQL docs.
Note
All functions come without default aliases, so you must explicitly provide one. For example:
>>> SomeModel.objects.aggregate(arr=ArrayAgg('somefield'))
{'arr': [0, 1, 2]}
General-purpose aggregation functions
ArrayAgg
-
class
ArrayAgg
(expression, distinct=False, filter=None, **extra) Returns a list of values, including nulls, concatenated into an array.
-
distinct
- New in Django 2.0:
An optional boolean argument that determines if array values will be distinct. Defaults to
False
.
-
BitAnd
-
class
BitAnd
(expression, filter=None, **extra) Returns an
int
of the bitwiseAND
of all non-null input values, orNone
if all values are null.
BitOr
-
class
BitOr
(expression, filter=None, **extra) Returns an
int
of the bitwiseOR
of all non-null input values, orNone
if all values are null.
BoolAnd
-
class
BoolAnd
(expression, filter=None, **extra) Returns
True
, if all input values are true,None
if all values are null or if there are no values, otherwiseFalse
.
BoolOr
-
class
BoolOr
(expression, filter=None, **extra) Returns
True
if at least one input value is true,None
if all values are null or if there are no values, otherwiseFalse
.
JSONBAgg
-
class
JSONBAgg
(expressions, filter=None, **extra) Returns the input values as a
JSON
array. Requires PostgreSQL ≥ 9.5.
StringAgg
-
class
StringAgg
(expression, delimiter, distinct=False, filter=None) Returns the input values concatenated into a string, separated by the
delimiter
string.-
delimiter
Required argument. Needs to be a string.
-
distinct
An optional boolean argument that determines if concatenated values will be distinct. Defaults to
False
.
-
Aggregate functions for statistics
y
and x
The arguments y
and x
for all these functions can be the name of a
field or an expression returning a numeric data. Both are required.
Corr
-
class
Corr
(y, x, filter=None) Returns the correlation coefficient as a
float
, orNone
if there aren’t any matching rows.
CovarPop
-
class
CovarPop
(y, x, sample=False, filter=None) Returns the population covariance as a
float
, orNone
if there aren’t any matching rows.Has one optional argument:
-
sample
By default
CovarPop
returns the general population covariance. However, ifsample=True
, the return value will be the sample population covariance.
-
RegrAvgX
-
class
RegrAvgX
(y, x, filter=None) Returns the average of the independent variable (
sum(x)/N
) as afloat
, orNone
if there aren’t any matching rows.
RegrAvgY
-
class
RegrAvgY
(y, x, filter=None) Returns the average of the dependent variable (
sum(y)/N
) as afloat
, orNone
if there aren’t any matching rows.
RegrCount
-
class
RegrCount
(y, x, filter=None) Returns an
int
of the number of input rows in which both expressions are not null.
RegrIntercept
-
class
RegrIntercept
(y, x, filter=None) Returns the y-intercept of the least-squares-fit linear equation determined by the
(x, y)
pairs as afloat
, orNone
if there aren’t any matching rows.
RegrR2
-
class
RegrR2
(y, x, filter=None) Returns the square of the correlation coefficient as a
float
, orNone
if there aren’t any matching rows.
RegrSlope
-
class
RegrSlope
(y, x, filter=None) Returns the slope of the least-squares-fit linear equation determined by the
(x, y)
pairs as afloat
, orNone
if there aren’t any matching rows.
RegrSXX
-
class
RegrSXX
(y, x, filter=None) Returns
sum(x^2) - sum(x)^2/N
(“sum of squares” of the independent variable) as afloat
, orNone
if there aren’t any matching rows.
RegrSXY
-
class
RegrSXY
(y, x, filter=None) Returns
sum(x*y) - sum(x) * sum(y)/N
(“sum of products” of independent times dependent variable) as afloat
, orNone
if there aren’t any matching rows.
RegrSYY
-
class
RegrSYY
(y, x, filter=None) Returns
sum(y^2) - sum(y)^2/N
(“sum of squares” of the dependent variable) as afloat
, orNone
if there aren’t any matching rows.
Usage examples
We will use this example table:
| FIELD1 | FIELD2 | FIELD3 |
|--------|--------|--------|
| foo | 1 | 13 |
| bar | 2 | (null) |
| test | 3 | 13 |
Here’s some examples of some of the general-purpose aggregation functions:
>>> TestModel.objects.aggregate(result=StringAgg('field1', delimiter=';'))
{'result': 'foo;bar;test'}
>>> TestModel.objects.aggregate(result=ArrayAgg('field2'))
{'result': [1, 2, 3]}
>>> TestModel.objects.aggregate(result=ArrayAgg('field1'))
{'result': ['foo', 'bar', 'test']}
The next example shows the usage of statistical aggregate functions. The underlying math will be not described (you can read about this, for example, at wikipedia):
>>> TestModel.objects.aggregate(count=RegrCount(y='field3', x='field2'))
{'count': 2}
>>> TestModel.objects.aggregate(avgx=RegrAvgX(y='field3', x='field2'),
... avgy=RegrAvgY(y='field3', x='field2'))
{'avgx': 2, 'avgy': 13}